The Crystal Structure of α -2-Ethyl-5-methyl-3,3-diphenyltetrahydrofuran

BY P. SINGH* AND F. R. AHMED

Pure Physics Division, National Research Council of Canada, Ottawa 7, Canada

(Received 14 February 1969)

The crystal structure of α -2-ethyl-5-methyl-3,3-diphenyltetrahydrofuran, C₁₉H₂₂O, has been determined from X-ray data by the direct method of symbolic addition and has been refined by least-squares to an *R* index of 0.044 for the 2796 observed reflexions. The unit cell is triclinic, space group *P*I, with dimensions a = 9.235, b = 10.318, c = 8.911 Å, $\alpha = 93^{\circ}28'$, $\beta = 114^{\circ}42'$, $\gamma = 90^{\circ}11'$. The saturated fivemembered tetrahydrofuran ring is non-planar and its atoms are within +0.23 and -0.25 Å of their mean plane. The two C-O bonds in the ring are equal, their mean being 1.445 Å, but the three C-C bonds are of lengths 1.556, 1.543, and 1.517 Å ($\sigma = 0.004$ Å for each) which are significantly different from each other. The internal valence angles are 110.8° at O, 103.5° to 105.2° at three of the carbon atoms, and only 99.4° ($\sigma = 0.2^{\circ}$) at the C atom where the phenyl groups are substituted. The ethyl group is axial and the methyl group is equatorial, and they are *cis* relative to the furan ring. The axial phenyl ring is nearly normal to the furan ring and is rotated by 83° round the C-C bond joining them, while the equatorial phenyl ring makes a dihedral angle of 40° with the furan ring and is rotated by 32° round the bond joining them. The dihedral angle between the two phenyl rings is about 80°.

Introduction

The biochemical interest in the structure of 2-ethyl-5methyl-3,3-diphenyltetrahydrofuran (I, a) arises from its close relation to α -methadol (I, b) and methadone (I, c), which are used as narcotics in pharmaceutical ethylidene-5-methyl-3,3-diphenyltetrahydrofuran (I,d). Also, from the X-ray results of Hanson & Ahmed (1958), the $O \cdots C^*$ distance in methadone is only 3.25 Å, which shows that the atoms are in positions favourable for forming the tetrahydrofuran ring.

The objective of the present X-ray structure analysis is to determine the dimensions and planarity of the

experiments. Methadone has been shown by Harper, Jones & Simmonds (1966) to be readily cyclized to 2highly saturated five-membered tetrahydrofuran ring, and the *cis/trans* orientations of the substituents. It is hoped that this information will contribute to a better understanding of the biological properties of the tetrahydrofuran derivative and the related compound α methadol. Also, the problem has been considered suit-

^{*} National Research Council Postdoctorate Fellow. Present address: Department of Chemistry, Ohio University, Athens, Ohio 45701, U.S.A.

able for acquiring further experience with the automatic application of the direct method of phase determination. Based on this experience, several modifications have been made to the computer program for symbolic addition procedure which was written in this laboratory by S.R. Hall as part of the NRC set of crystallographic programs for the IBM 360 computer by Ahmed, Hall, Pippy & Huber (1966).

Crystal data

Crystals of α -2-ethyl-5-methyl-diphenyltetrahydrofuran, C₁₉H₂₂O, are colourless transparent plates. The unit cell is triclinic, space group $P\overline{1}$, with dimensions

<i>a</i> = 9·235 Å	$\alpha = 93^{\circ}28'$
b = 10.318	$\beta = 114 \ 42$
c = 8.911	$\gamma = 90 11$
$(\sigma = 0.003 \text{ Å})$	$(\sigma=5')$.

The unit-cell volume = 769.62 Å³, F.W. 266.38, F(000)=288 electrons, $\mu(Cu) = 5.36 \text{ cm}^{-1}$. The density, $d_m =$ 1.157 g.cm⁻³ (by flotation in aqueous potassium iodide solution at 20°C), and $D_x = 1.149 \text{ g.cm}^{-3}$ for Z = 2.

Data collection

The unit-cell dimensions and most of the intensity data were measured on the 4-circle Picker automatic diffractometer for a crystal with dimensions 0.14, 0.27, 0.34 mm with Cu radiation $[\lambda(K\alpha_1) = 1.54051, \lambda(K\alpha_2) =$ 1.54433 Å] and Ni filters. The reflexions in the range $130^{\circ} \le 2\theta < 165^{\circ}$ which were not accessible on this instrument were measured on the General Electric XRD-5 manual diffractometer. The unit-cell constants were calculated from the angular settings of the highorder axial reflexions $(70^\circ \le 2\theta < 130^\circ)$ which were measured at a take-off angle of 1.5° and with a narrow slit inserted before the counter window. The integrated intensities were recorded by the θ , 2θ scan method at a 2θ -scan speed of 2° per minute and a take-off angle of 4°. The $2\bar{\theta}$ -scan range was 2.5° when $2\theta < 90^\circ$, 3.0° when $90^{\circ} \le 2\theta < 130^{\circ}$, and as much as 6.0° when $155^{\circ} \le 2\theta < 130^{\circ}$ 165°. A 20-second background count was taken both at the start and at the end of the scan range of each reflexion. The very strong reflexions were measured at a low current setting. One of the two standard reflexions, 005 or 006, was measured at intervals of 40 to 60 minutes, and accordingly the intensity data were reduced to the same relative scale. The absorption corrections were considered to be small and were not applied. Of 3391 non-equivalent reflexions within $2\theta < 165^{\circ}$ there were 2796 (82.3%) observed reflexions with significant net counts.

Structure determination by symbolic addition

As shown in Table 1, the distribution statistics of the normalized structure factor amplitudes, |E|, of this structure are considerably closer to the theoretical

values of a centrosymmetric structure than to those of a noncentrosymmetric structure as calculated by Karle, Hauptman, Karle & Wing (1958). Based on these statistics, the space group is probably $P\overline{1}$.

Table	1.	Distribution	statistics	of	the	E	amplitudes
-------	----	--------------	------------	----	-----	---	------------

	Tetrahydrofuran	ΡĪ	<i>P</i> 1
$\langle E \rangle$	0.786	0.798	0.886
$\langle E^2 \rangle$	1.000	1.000	1.000
$\langle E^2 - 1 \rangle$	1.001	0.968	0.736
E > 3	0.4%	0.3%	0.01%
E > 2	4.8%	5%	1.8%
E > 1	29.9%	32%	37%

The symbolic addition procedure of phase determination for centrosymmetric structures which was first applied by Karle & Karle (1963), and later described in more detail by Karle & Karle (1966) was carried out on this structure with a modified version of Hall's existing program mentioned earlier. The modification examines the probability of the newly determined signs and restricts their acceptance as tentative signs, in the early stages of the application of the Σ_2 relationships, to those with relatively high probability. For this test, only the sums

$$\sum_{\mathbf{k}} \sigma_3 \sigma_2^{-3/2} |E_{\mathbf{k}}| E_{\mathbf{k}} E_{\mathbf{h}-\mathbf{k}}$$
(1)

are evaluated instead of the full probability expression

$$P_{+}(\mathbf{h}) \simeq \frac{1}{2} + \frac{1}{2} \tanh(\sigma_{3}\sigma_{2}^{-3/2}|E_{\mathbf{h}}| \sum_{\mathbf{k}} E_{\mathbf{k}}E_{\mathbf{h}-\mathbf{k}}) \qquad (2)$$

given by Woolfson (1954) and Cochran & Woolfson (1955). In this automated procedure, the probability limit is set relatively high to start with, the search for new signs is continued until no more new signs can be accepted, then the probability limit is reduced in steps and the search is repeated.

For this structure $\sigma_3 \sigma_2^{-3/2} = 0.157$. The first step of the phase determination was restricted to the 162 re-

Fig. 1. Perspective view of the molecule excluding the non-furan hydrogen atoms.

flexions with $|E| \ge 2.0$. The three origin-defining reflexions $|\overline{4}6$, 810, and 207 which were selected automatically by the computer program were the 1st, 6th, and 11th reflexions, respectively, in the list of descending |E|'s. Their signs were assumed to be positive. The successful automatic phase determination proceeded as described herewith. The limit on the sums given in expression (1) was first set to 8.0, the search for new signs was carried out until exhausted, then that limit was reduced to 7.5 and later to 7.0. Thus, before the first symbol (A) was introduced, no new signs were accepted unless their probability was about 1.000. After assuming the symbol A, the process was repeated with the limits set to 6.5, 6.0, and 5.5. The second symbol (B) was then introduced and the limits were reduced to 5.0, 4.5, and 4.0. Similarly, symbol C was then introduced with the limits set to 3.5, 3.0, and 2.5, and finally symbol D was introduced with the limits set to 2.4, 2.2, and 2.0, where this minimum limit of 2.0 corresponds to a probability of 0.98. From the accumulated information about the signs of the 162 reflexions, it was obvious that two of the assumed symbols were probably positive and the two remaining symbols were probably not positive, *i.e.* negative. This procedure produced the signs of the 162 reflexions without giving any contradictions whatever in the Σ_2 relationships between them. The second step in the phasing process was then applied with similar success to the 264 reflexions with $2.0 > |E| \ge 1.50$. The E map computed with these 426 reflexions gave the complete structure (excluding the H atoms)

Table 2. Fractional coordinates, vibration tensor components (Å²) for the expression $T = \exp \left[-2\pi^2 (U_{11}a^{*2}h^2 + \ldots + 2U_{23}b^*c^*kl + \ldots)\right]$, and their e.s.d.'s (all quantities × 10⁴)

	x	у	z	U_{11}	U_{22}	U_{33}	$2U_{23}$	$2U_{13}$	$2U_{12}$
O(1)	-2922(2)	2230 (2)	-1078(2)	456 (11)	676 (14)	342 (10)	56 (19)	158 (17)	- 126 (20)
C(2)	-1615 (3)	2837 (3)	350 (3)	353 (13)	519 (17)	334 (14)	75 (24)	238 (22)	7 (24)
C(3)	-1674(3)	2176 (3)	1849 (3)	323 (13)	406 (14)	321 (13)	37 (22)	231 (21)	39 (21)
C(4)	-2203(3)	788 (3)	1049 (3)	457 (16)	428 (16)	419 (15)	- 49 (25)	293 (25)	5 (25)
C(5)	-3412(3)	1007 (3)	-691(3)	378 (15)	524 (17)	444 (16)	-148(27)	252 (25)	- 66 (25)
C(6)	- 3505 (4)	- 51 (4)	- 1983 (4)	656 (22)	799 (26)	557 (20)	- 511 (37)	206 (35)	86 (39)
C(7)	-61(3)	2658 (3)	151 (4)	411 (15)	841 (24)	407 (16)	68 (30)	395 (26)	-70 (31)
C(8)	- 148 (5)	3194 (5)	- 1444 (4)	675 (25)	1630 (45)	523 (21)	324 (49)	684 (39)	-268 (53)
C(9)	-72 (3)	2290 (3)	3358 (3)	327 (13)	475 (15)	315 (12)	55 (22)	290 (21)	45 (22)
C(10)	802 (3)	1228 (3)	4061 (4)	432 (15)	524 (18)	438 (16)	174 (27)	273 (26)	105 (27)
C(11)	2265 (4)	1392 (3)	5431 (4)	460 (17)	762 (23)	480 (18)	408 (33)	232 (28)	267 (32)
C(12)	2861 (3)	2607 (4)	6128 (4)	355 (15)	903 (25)	391 (16)	112 (31)	156 (25)	-25 (31)
C(13)	1993 (3)	3677 (3)	5454 (4)	400 (15)	677 (21)	471 (17)	- 190 (30)	318 (27)	- 189 (28)
C(14)	543 (3)	3522 (3)	4086 (3)	370 (14)	515 (17)	424 (15)	- 28 (26)	304 (24)	6 (25)
C(15)	-2977 (3)	2740 (3)	2328 (3)	311 (12)	412 (14)	362 (13)	-67 (23)	253 (22)	-71 (21)
C(16)	-2941 (3)	2512 (3)	3873 (3)	410 (15)	556 (18)	404 (15)	4 (26)	350 (25)	- 52 (26)
C(17)	-4105 (4)	2968 (4)	4344 (4)	498 (18)	747 (23)	517 (18)	-139 (33)	584 (30)	- 164 (31)
C(18)	- 5343 (4)	3657 (4)	3286 (4)	450 (17)	707 (22)	742 (23)	-257 (36)	710 (33)	- 60 (31)
C(19)	- 5413 (3)	3882 (3)	1754 (4)	380 (15)	640 (21)	697 (21)	87 (33)	424 (30)	190 (29)
C(20)	-4243(3)	3428 (3)	1274 (4)	381 (15)	557 (18)	461 (16)	85 (27)	323 (25)	107 (26)

Table 3. Fractional coordinates ($\times 10^3$) and isotropic temperature factors (Å²) of the hydrogen atoms and their e.s.d.'s The first subscript in the atom number refers to the serial number of the nearest carbon atom.

	x	у	z	В
H(2)	-186(3)	379 (2)	39 (3)	3.0 (0.5)
H(4,1)	-266(3)	24 (3)	167 (4)	4.7 (0.7)
H(4,2)	-124(3)	34 (3)	101 (3)	3.7 (0.6)
H(5)	-452(3)	114 (3)	-73(3)	3.2 (0.5)
H(6,1)	- 383 (5)	-85 (4)	-173 (5)	8.6 (1.1)
H(6,2)	-423 (4)	17 (3)	- 308 (4)	6.4 (0.9)
H(6,3)	-242 (4)	-15(3)	- 197 (4)	5.9 (0.8)
H(7,1)	8 (4)	158 (4)	16 (4)	6.7 (0.9)
H(7,2)	80 (4)	310 (3)	105 (4)	5.0 (0.7)
H(8,1)	-90 (4)	271 (4)	-227 (5)	7.9 (1.0)
H(8,2)	90 (4)	306 (4)	-147 (5)	7.4 (1.0)
H(8,3)	- 58 (6)	412 (5)	-158 (6)	12.9 (1.6)
H(10)	42 (3)	37 (3)	357 (4)	4.5 (0.7)
H(11)	285 (4)	64 (3)	586 (4)	5.4 (0.8)
H(12)	391 (3)	274 (3)	704 (4)	4.5 (0.7)
H(13)	240 (3)	451 (3)	589 (4)	4.9 (0.7)
H(14)	-6(3)	427 (3)	363 (3)	4.1 (0.6)
H(16)	-207(3)	203 (3)	461 (3)	4.2 (0.6)
H(17)	-405 (4)	280 (3)	543 (4)	5.6 (0.8)
H(18)	-618 (4)	398 (3)	358 (4)	5.1 (0.7)
H(19)	- 627 (4)	436 (3)	98 (4)	5.1 (0.7)
H(20)	-431(3)	358 (3)	19 (3)	4.2 (0.6)

2404 STRUCTURE OF α-2-ETHYL-5-METHYL-3,3-DIPHENYLTETRAHYDROFURAN

Table 4. Observed structure amplitudes and calculated structure factors $(\times 10)$

* Indicates unobserved reflexion and $|F_{th}|$ in place of $|F_o|$.

ĸ	F0 FC	×	F0 FC	1 *	FD	~ I	ĸ	P0 PC	۲.	P0	"]	ĸ	FG FG	1 *	20	۴۲	ĸ	FO	۳ I	ĸ	FO	f6	ĸ	FO .	*	ĸ	F0 F	<u>۱</u>	K F0	PC
H= C	39 39 789 -792	0 1 2	40 -41 182 -183 17 18		114 99 92 56	114 100 88 56	-6 -7 -8 -9	53 55 110 3 41 -42 57 -54	н- 0 1	1. L. 11 11•	12	-6 1 -7	40 31 33 121 104 -		135 16 14 90	-14C 12 -10 -1	7777	15 54 94	14 -56 0	10 11	49 33 12	44 31 -5	1 2 3	96 82 94	95 85 100	1111	33 2 33 - 32 -3	-	-1 96 -2 80 -3 77	-100 -74 73
3 4	63 452 57 57 53 -53	3454	91 93 69 69 67 68	1 7	90 128 13	-127 -15	-10 -11 -12	13 11 12 13 6* -10	23	32 -38 - 11*	32 41 -1	-9 -10	44 -4 11* (39 3(13 -1)	10	21 60	22 -64	-7 -8 -9	9 38 12	7 36 12	12 -1 -2	70 70 92 45 -1	6 91 163	4 5 6 7	19 23 110	19 -25 6 -13	-8 -7 -8	70 -2 26 -2	4	-6 19 -7 25	-8 -21 27
7 6 1 9	57 -52 49 144 35 35	7 8	14 16 12 -15 26 -29	11 12 13	10•	-5	н- 0	1, L= -4 198 194	6 7 8	27 - 36 13	29 50 14	-12 H= 2	• L= −1	-5	40 10# 68	44 11 -66	н- : 0	2, L. 52 ·	-7	111	44 27 1 24	-35 126 22	8 9 10	13 8• 32	12 -1 -30	н- : ?	3, L= - 37 -3		-8 11 -9 67 10 30	-67 -27
10	110 -7 29 28 14 -16	10 -1 -2	50 -1 91 92 16 -15	-1 -2 -3	455 412 63	-459 -421 64	1 2 3	49 39 327 -318 175 -173	9 10 -1	39 - 7• 50	39 -4 51	1	60 -61 92 9	-7 -8 -9	11* 19 29	-16 -30	1 2 3	13 45 58 22	-7 43 59	-7 -8 -9	19 - 30 38 12 -	-19 31 40 -10	-1-2-1-1	56 17 106 - 92	-52 -11 -108 -96	234	25 -2 10* 11* - 23 -2	а 4 1 3 н	11 12 5	• -1
н», (0, L= 1	7 7 7	110 -2 96 101 18 18	-5	56 36 145	-54 34 151	5 6 7	104 102 148 -156 49 -48	111	150 1 18 98 -	49 19 97	3	53 14 64 -6 51 -25	-11 H=	74 2, L=	17	5	11* 19 40	-15 -15	-11 -12	22 · 11	-21		47 42 55	44 41 56	5	65 6 68 6 15 -	4 9 7	0 53 1 110	55 105
12	86 83 301 -293 206 201	-7 -8 -9 -10	48 -50 16 21 25 28	-8 -9 -10	61 29 11•	63 -30 3 -10	10	122 122 16 -15 43 -41 19 24	-6 -7 -8	15 - 9+ 11	18 3 12	* *	93 94 79 8 35 34 14 -14	0	176 267	-173	10	100 90 23 17	-3 -3 -27	H- 1	9, L. 145 127 -	-1 352 126	-9 -10 -11	31 22 14 6*	-27	10	25 -2 9* 7* 88 -4	6 5	3 17 4 16 5 22	-20
	57 56 51 -48 153 -147	-11 H=	6+ -2 0, L+ 7	-12 -13	27	-2 29	12 -1 -2	70 7 176 -169 109 -104	н-	1, L-	•	10 11 12	49 -5 31 2 89	3	375 168 231	-363 165 227	-23	18 41 11•	-23 -39 0	2 3 4	45 39 125 -1	44 23 120	н- :	3, L= 107 -	+- 	-2 -3 -4	15 -1 25 2 59 -5	4 8	6 41 7 94 8 63 9 41	38 -97 -62
10	49 -47 24 -20 58 57	0 1 2	24 22 96 -99 14 -16	1	46 26	-47	-4 -5 -6	74 -74 64 -61 54 54	1 2 3	11 10• 10			54 -4 12 - 21 -1		51 71 14	-53 -69 10	-6 -7 -8	10* 65 46	63	67	72 · 23 78	-61 21 79	1 2 3	78 277 89	72 277 3	-7	49 4 42 -4 13 -	7	10 23 11 12 12 8	26 -12 • 3
11 12 13	17 14 10 8 7• 17	3	138 137 114 8 81 -79 109 1	3	62 226 89 50	59 218 -87 -51	-7 -8 -9 -10	23 -24 68 -70 17 15 17 15	5	25 19 23 10+	28 16 19 -7	-5 -6 -7 :	58 -5 90 - 43 14 19 2	10	45 17 15 19	-15 -15 -13	-9 H= 1	8 2, L=	•	9 10 11	50 13 90 27	51 13 4 27	5	134 - 16 85 10+	-129 -12 88 -4	-9	74 - 3, L=	8	-1 64 -2 65 -3 18 -4 22	-60 -16 -8
-2 -3 -4	137 -131 105 104 185 184	9	90 0 15 -14 50 -1	7	62 18 27	65 18 -29	-11 -12	30 -26 22 -19	-2	11 - 21 57	10 24 56	-9 -10 -11	06 -10 70 -7 13 - 74 7	-2 -3 -4	71	10 75 211	1 2	48 14 25	-49	-1 -2 -3	242 124 40	257 119 37	10	107 - 47 68 79	-104 -41 68 27	1 2	30 3 17 -1 72 -6	3	-5 76 -6 39 -7 10 -8 41	-73
	8* 13 90 -81 70 -75	-2-3-4	45 -48 71 -71 101 -100	10 11 12	10 21 7*	15 20 -6	ů	152 151 117 -122	-6 -7 -8	43 - 17 6•	10	н• :	t, L.	-6 -7 -8	90 27 53	-84 -29 52	-1	13 18 19	-11 -17 -12	-5 -6 -7	30 37 10•	34 31 8	12 -1 -2 -	21 70 58	-25	-1	16 1 22 -1 8•	-1 -	-9 54 10 21 11 21	53 22 -22
-10 -11 -12	32 31 37 42 21 17 15 13	-7	90 92 104 -4 94 -9	-1 -2 -3 -4	297 92 261	-125 297 95 -256	3	95 -95 113 -117 21 21	H= 0	1, L- 11+	-•	1 2 3	241 23 146 -14 10 -1	-10 -11 -12	39 17 16	-41 -16 17	-3		-1 -1	-9 -10 -11	71 10• 51	-71 -15 53		134 118 - 57 -	129 -121 -56	-;	15 i 10	9 H	- 4,	L= 2
-13 H• -	104 -5 0,L= 2	-10	20 -20 70 -2	-5	19 51 10+ 21	-14 49 -4	6 7 8	11• • 17 16 54 55 17 -17	1 2 3 4	41 37 35 53	45 39 36	5 6 7	100 30 42 -4 128 -12 81 8	H	2. 1.	5	-6 -7	36 21 7. L .	33	-12 H=	37 · 3, L=	-32 2	-7 -8 -9 -10	49 32 29 15	46 -29 -25 -14	н• 0 1	3, L= ·	22	0 127 1 9 2 124 3 81	-124 -7 127 -80
1 2	223 226 176 180 103 -104	0	11# -3 62 -62	-9 -10 -11	39 22 35	-42 -18 34	10 -1 -2	70 -8 27 24 96 -97	67	67 - 11 13	-6 -6 14	10	51 4 20 1 14 -1	12	62 12 91	65 14 -92	Î	40 29	30 -30	1 2	165 308 172 -	160 304 177	-11 -12	20	18 47	234	110 -11 42 33	14	4 186 5 18 6 171	-191 20 174
	201 -185 195 -190 29 -30	3	100 -1 39 37 90 6	+=	15 1, L.	-10		11 12 86 -87 36 37	-1 -2	4* 23 - 45	20 86	12 -1 -2	40 116 11 93 -0	5 6 7	19 19 33 37	-135 15 34 -38	3	61 16 11	66 -15 -10	34 5 6	26 73 19	-28 68 22	**************************************	110	-5 -44	6 7 8	11 1 10• -	2	8 57 9 9 10 24	-54 39
	19 -26 56 -58 15 12 37 36	4 7 -1	18 -17 14 14 32 30	0	492 260 22	481 -253 -19	-7 -8 -9	18 17 110 -6 13 -13 18 -22		11# 91 - 10#	-7	-3 -4 -5 -6	13 - 81 7 10 -9 10 -1	10	12 84 15 104	-12 -1 16	1	10+ 22 35 20	-10 -17 32	7 8 9	131 - 24 56 39	-135 26 57	234	103 43 27 54	105 44 27 54	-1 -2 -3	16 11* 99	9	11 9 -1 9 -2 100 -3 47	• -6 10 103
11 12 -1	20 17 70 -2 171 -170	1 1 1	26 22 32 32 58 -59	5	137 196 75	136 196 -73	-11 H=	70 3 1. L5	-7	17	18	-7 -8 -9	23 2 25 -2 17 1	-2	62 72 55	66 75 -56	-1 -2 -3	72 24 59	73 24 -60	11 -1 -2	392 - 105 -	-4 -392 -112	47	13 39 4*	-12 40 -1		43 4 66 4 49 -4	1	-4 11 -5 10 -6 21	-14 • 0 -28
-3	75 71 101 -94 160 -154	-7	13 -13 7• 3 5• 10	10	116 99 51	118 -98 -51	0 1 2	8° -1 64 58 141 -158	î	39 44	39	-11	20 i 17 -1		57 11• 17	-59 -2 16	-5	23 94 19	23 94 -18		76 18 21	-71 22 -25	-1 -2 -3	38 35 124	39 -33 125	- 0 H•	48 - 1 3, L= -		-8 79 -9 37 10 56	86 -34 -60
-8 -7 -8 -9	90 -5 71 74 62 65 38 -36	H- 0	0.L= 9 37 30	11 12 13 -1	34 90 175	30 0 3 169	45	97 -39 9 8 83 -85 40 -45	-1	20 20	-2 6 10 21	î	2, L 556 - 56 603 - 60	-10	8* 7*	-2 -2	- 8 H=	6 ₩ 2, L=	,	-8 -9 -10	69 54 44	75		117 · 13 26	-118 -9 27	0 1 2	10° 25 39 -	20		L= -2
-10 -11 -12	58 -59 100 3 80 -4	123	90 9 16 -19 35 35 79 -7	-2 -3 -4	286 139 41	-267 138 42 -19	*	54 -56 49 51 77 76 28 -32	-2 -3 -4	11 .	-12	234	65 6 120 -12 50 -5	, ,	2, L	13	0 1 2	11 40 21	-6 -37 -21	-11 -12 He	28 6* 3. 1.9	-30	-10	10 8* 6*	-1	3	14 - 53 - 11 -	13 54 12	0 224 1 75 2 84 3 137	230 569 4 84 7 134
н=	0.L= 3	-1 -2	15 -1 90 -1 22 -24	-6 -7 -8	11 71 67	7 68 84	11 12 -1	89 3 19 23 17 16	-6 H=	20 ·	-9	678	77 7 58 6 17 1	2	83 42 64	72 -44 -60	-2.3	37 21 10	-34	0	318 - 202 -	322	ب	3. L= .88	-5 86		13 -	-5	A 143 5 27 6 83	134
1 2 3	137 -134 39 -30 79 -5 116 -114		24 -25 21 19 39 30 70 -12	-10 -11 -12	13 90 70	15	1777	45 -44 84 -83 34 32	12	52 10* 10*	49 8 8	10 11 12	40 -3 10* 19 1		12 11* 33	-14 -10 -33	H- 0	2, L= 11	-9 12	3	*** *** 17	-49 37 -78	234	62 94 32	-54 -3 -34	-1 -2	33 -	33	8 11 9 25 10 17	* -6 5 23 7 -17
5 67	53 -52 25 -20 46 -44 14 -17	-7 H=	15 -11 0, L= 10	<u></u> ۴.	1, La 244	• •	12.11	22 20 64 -64 32 -32 37 41		75 36 80 34	-74 34 84 -33	-1 -2 -3	269 26 31 3 276 27 166 16	10	11+ 36 8+ 10+	-11 32 -3	123	39 21 35	-40 23 39 41	7	164 - 16 41 11*	-168 16 42 -2	5	29 69 47 47	-27 66 49 42		35 - 92 34 24 -	33 92 32 26	12 19 -1 329 -2 341	19 325 7 -352
10	19 21 23 -19 15 -21	1 2	21 11 21 -22 12 12	1 2 3	123 127 158	-116 -128 155	-10 -11	1 -11		31 9 10•	30 10 8	-5	121 -11 122 12 27 2	-1	4+ 35 58	-10 -33 -56	5 6 7	25 13 30	25 -13 -29	10 11 12	10* 9* 26	27	10	39 70 24	-37 -71 24	-7 H=	40 3, L= -	39 10	-3 222 -4 214 -5 90	2 -219 5 220 5 89 7 -20
12 -1 -2	4* 4 50 -57 203 -203		13 -11 17 -19 52 51		59 39 82	-54 -35 82	1	47 51 122 -125		12 26	-3 14 -20	-10 -11	13 16 -1 20 1	7	27 22 42	27 -21 -41	-1 -2 -3	48 67 35	50 -68 -34	-2-3-4	245 128 - 75	244 124 -69	-1-2-3	35 101 112	-34 103 114	0	90 21 - 15	21	-7 44 -8 18 -9 65	-47 14 63
	16 15 231 225 123 -114 124 -122	H- 0	1, L= 0 01 70		82 31 21 80	-28 -24 3	3	52 -52 137 130 22 -23	н- н-	1, L= -	-10	-12 H=	2, L=	-10	11+ 10+ 20	10 -5 -20		17 22 5*	20 -21 -1	777	17 40 178 -	16 -61 -178	-5 -6 -7	51 51 11• 19	-54 -54 17	4 5 6	23 - 32 12	21 -	-11 4	-2
-7 -8 -9 -10	73 74 24 26 23 -27 27 -26	23	453 450 82 -83 481 -485 165 161	12 -1 -2 -3	158 105	12 149 99 95	1	66 -67 36 39 68 -5 79 1		25 16 30	24 15 -30	1 2 3	147 13 34 -3 105 -10 102 -10	∺-	2, L 117	• • •	н=	2, L= 80	-16	-10 -11 -12	32 92 15 12	-32 91 -14 -11	-8 -9 -10 -11	34 10 8* 34	35 -5 34	н= -1	3, L= - 18	10 ' 15	0 154	-157 6 61
-11 -12	9 10	6 7	201 199 12 -14 44 -44		45 50 14	41 52 11	777	86 88 225 -229 46 -44 288 291		38 32	-36 30	4 5 6 7	85 8 40 4 103 -10 24 -7	1 2 3	133 54 11*	138 -59 -4	1 2 3	80 20 16 75	11 20 -13	H- 0	3, L. 12	3	**	3, L=	6 -91	~~~	8* 39 15 14 -	7 39 13	2 10 3 91 4 147 5 84	0• -4 1 -90 7 149
0	295 -294 27 27	9 10 11	32 -31 30 -21 21 -11	-10	28 43 10+	-30 -45 -9		11* 1 120 -118 10* -4	-1	22 28	-16	10	44 4 20 -2 24 -2	5	16 21 22	-15 -21 -22	6	7* 52	-2 54	123	13 18 89	-13 -18 -94	1 2 3	53 94 10*	54 91 -6	H=	3, L= -	11	6 11 7 31 8 10	7 -16 1 31 0* 3
345	20 -21 29 28 10• -6	1377	5+ 0 286 -310 349 -35		25 1, L	3	-10	90 -5 70 -3	 +=	24	14	-1 -2 -3	272 20 39 3 135 -13	-1	25 144 57	23 -147 -55	-1	20 20 17	-29 15	5 6 7	174 76 59	180 -74 -59	5	13 11 13	-13 11 -10	1 2 3	13 11 25	20	10 11 -1 51 -2 10	
678	21 25 94 95 28 -28 75 -77	-3	174 18 26 -10 283 -29 28 -3		6* 75 17	-14	بب	1, L= -6 25 29 132 133	0	67 525 -	-72	-4 -5 -6 -7	14 -1 34 3 48 -1 41 7		85 70 15 35	86 67 16 -36		27 43 2. L=	-42 -11	9 10	10+ 36 8+ 13	-38 -6 -9	-1 -2 -3	35 11* 50 36	- 1	H- -1	3, L= - 11	11	-5 90 -6 24	1 20 8 172 0 92 4 -22
10	50 50 33 42 26 -27	-7 -8 -9	39 34 45 44 79 8		42 135 11	39 126 -7	234	24 -24 14 -17 10 -7	3	140 293 ~ 125	167 305 126	-8 -9 -10	21 -2 20 3 43 4	-7	22 11 32	18 9 -25	° 1	35	-35 7	-1 -2 -3 -4	207 - 27 77	-85 -207 30	17.47	26 13 34 78	-28 14 33 28	H= 0	4, L. 227 2	°	-7 2 -8 1 -9 9	5 -29 7 17 94 5 4 -35
-3	21 -18 46 47 41 -41	-11 -12 -13	21 -2 14 -1 5• -1		67 59 66	-66 62 71	7	11• 1 29 31 28 -33		10* 32 14	38	-12 H•	- i • - 2, 1• -	- 10 +=	2, L	6	н -	3, L= 257	0 260	1111	50 28 11•	-51 -28 -16	-	14	-14	1 2 3	48 - 176 -1 15 -	45 - 01 15	-11 10 +- 4,	6 -14 L= -3
	24 20 130 131 20 22 50 -52	۳.	1, L= 3	10 11 12 5 -1	9* 8* 19	-5 5 -15	10 11 -1	27 28 6* -3 12 11	11 12 -1	29 29 156 -	-27	0 1 2	252 25 500 50 248 -21		154 69 100 109	-100 0	3	231 · 45 244	-238 -48 284	-9 -10 -11	17 57 27 34	61 31 -37	**************************************	17 61	23 60	6	71 19 - 123 -1	72 18 26	0 420	6 428 8 -169 8 -56
-10 -11 -12	10° -6 9° -3 22 -23	23	367 36 686 -68 327 32 437 43	1 -7	199 288 48 84	-191 -277 48	2747	108 110 109 3 25 -22 29 29		56 253 96 -	62 257 100	345	155 -14 104 9 25 2 90 -		99 32 122 56	100 31 -120 -57		98 · 138 · 106 ·	-102 -138 109 62	H= 0	3, L= 202	-3	2345	14 11 111 27	-10 -11 107 24	10	12 52 -	51 10 56 3	4 2 5 5	2 119 5 -26 90 8 4 50
н- 9	0, L= 5 128 124	6	291 -29 90 -8 38 3		9* 76 17	6 73 -14	-6 -7 -8	14 13 17 -19 10• -2		42 33 38	39 -35 -38	7	49 -9 57 0 102 10	10	30 31 23	24 -33 -25	10	33	33	1 2 3	32 44 194 -	-37 -63 -189	7	110 110 38	2 -35	12 -1 -2	90 128 -1 17	12 70 28	7 44 8 4 ² 9 11	6 -46 7 -50 10 7
1 2 3 4	31 -27 204 208 26 29	10	81 -8 52 -5 25 2	5 -10 1 -11 6 -12	39 24 34	36 -25 -30	-10 H=	6 -1 1.L 7	-10 -11 -12	11+ 24 13	-27	11 12 -1	14 - 15 275 -2	-1	95 111 69	-95 -109 -69	-1 -2 -3	188 111 68	194 -107 64	5	37 52 72	34 -56 -70	10 11 -1	94 31 56	-2 -36 -57	-4	117 1	19	11 1 12 1 -1 12	1 -13 2 -13 5 120
5 6 7 8	59 -54 95 99 49 48 16 -16	12 -1 -2 -3	19 1- 637 -65 250 -24 130 -12		1, L 124	- •	0 1 2	60 59 35 -37 65 -66	-13 H=	3+ 2, L=	1		140 14 17 -2 171 10		18 12 79 18	-16 5 -80 -15	1777	206 99 23	208 3 -24	10 11	40 25 18	97 -25 -18	1717	74 82 48	79 84 -45	-8 -9 -10	11• +3 - 17 -	41 15	-3 -3 -5 -5	9 62 1 -34 1 -59
10	90 9 18 18 7 4		167 16 36 -4 127 -12		166 10 92 21	-167 8 91 21	3	30 28 36 -35 28 -28 38 40	1 2	133 9 80 88	127 5 76	-6 -7 -8	109 11 32 -1 35 1 11•		51 18 26	50 -15 -25	-8 -9 -10 -11	11 44 27	11 41 -28 10	12 -1 -2 -3	7+ 236 17 207 -	-6 238 -12 -195	-6 -7 -8 -9	110 31 23 90	5 33 24 -2	-11 -12 H•	13 16 4, L-	13	-6 5 -7 5 -8 12 -9 5	-59 8 -59 3 121 5 57
-23	135 -134 77 -84 143 145		43 106 -11 33 3	5 6	63 22 57	-63 -19 60	-1	13 13 27 24 40 40	5	133 183 105 -	128 194 103	-10 -11 -12	21 -3 24 -3 34 -3	¦ ",	2, L 141	• 7	-12 H=	29 3, L=	27	1	181	-5 -12 -180	-10 H=	18 3, L=	-17	0	159 -1 68 - 49	54 64 47	-10 2 -11 4 -12	3 -23 0 37 5• -6
-6	101 -99	-12	ii -i	2 10	10*	-13	-3	86 -87 47 -45		119	123	H=	2, L-		34	-37	Ŷ	204 24	-200 24	-8	47	47 20	î	10*	12		23 -	23 41	H= 4,	L= 4
	113 110	1	1	. !!	10	,!!		12 12	1 17	·	-, 1	Ŷ	110 .	21 1	11		1 2	43	-45	-10	18	Tik 1	- 1	14	-15		104 -1	27	1 5	8 -13

* 10141111111111111111111111111111111111
C . 12115388441444172 1 4111617578474 1 4 411161757841 5 7772400113114 43517779 5 825877715466457545750 4 51451111 4 5565014772 7 3316528645734 5 77524647147 7 3722 457719772 7 3311077
א אראטאראטאראטערטערטערטערטערטערטערטערטערטערטערטערטערט
فعفاعه المعالمة المعالم
1-1-1-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2
st-drawerstation weiter weiter and to the activities of the states of th
איוויטאיאיאיאיאיאיאיאיאיאיאיאיאיאיאיאיאי
488 1 Lasus 554 1 outstatte 1 Litte astitute 1 after 1 dereture 2 heeteresten 1 dereture 1 der
Totore a second filteresserve a filteresterve a besteritiesesserve a filteresterve a bi filter a second filter f
Artisterste v
undure 7 destessions a settession of destessions a second of statisticanous of destessions account f destession of destessions a
414 Hite - This seares essisted a riseriusticer . cherresised an entities i utives a stated
uno 7 bistititiosesesure 7 11 7 eren 7 11111 7 erene 7 4111111 7 erene 7 41111111 7 erene 7 41111111 7 Serveren 7 512111111562.
tine - durodissitutiesteide o at i deur i daut a duratie a utite a utite a utite a directorie a durodissite a directorie a durodissite a directorie a durodissite
ا مالا المالية ا
aut isto best 1 attestistent . " his fritestistente thankie i takken is attestister settestist i thereased the settestist is attestister is a set a statiste i and a set a statiste i a statiste i a set a
o I Juli I our a built I correct I debuilt I arecourd I decourd I decourd I descourd I badduit I bacourd I badduit I concourd I built a
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
T UNITU F deligibility and the second of deligibility and the second f
2 1 1-2121 . Statister attister under attister under attister under attister under austratister under attister attiste
UNICODENTIO à UNI à UPUNI à COMPUNI à LOUIDI à LOUIDI à CACEVICO à ALOUIDI à CALOVENCO à LUCIDIÀ à CALOVENCO à LUCIDIÀ COLONI A
E 81127593414 6587947100 1 3 363826857141 1 434553891112 0 407245747 0 1 372477712 7 4751261367 7 314444481 8 3113137377 1 314747481 9 14403 0 4168744 0 4768744 0 47813912
i assessue i alouiseur i assessue i alouiseur i alouisessesse i Nio i alouisessesse i diuliseur i alouiseure i diuliseure i alouiseure i diuliseure i alouiseure i alouiseure i alouiseure
FO 30"2" " JUNAS ARE S PARTY AND STATT AND STATT AND STATT AND A TATTA AND TATTA AND A TAT
C 1111 1 100000001 1 00000000000000 0 000000

Table 4 (cont.)

ĸ	FO	FC	ĸ	FO	FC	×	FO	FC	I K	FO	FC	, ×	۴O	FC	ĸ	FO	FC		FO	FC	۲ ا	FO	FC	I K	FO	۴۵	ĸ	FÜ	FC	ĸ	FO	FC	ĸ	FO	FC
He	9, L.	· - e	н-	9, L=	-8	-2	44	-38	0	12	-11 -19	н-	10, L .	-2	н-	10, L-	-4	H=	10, L.	- 5	01	24 29	24 32	-+	36	31	Ha	11, L-	-2	H=	11, L-	-+	н-	11, L•	-6
-1	10.	-6	•	16	-15	-4	35	30	2	7	6	I .				10.	-9	-1	17	-18	2	-8-	- 10	H-	10, L-	-9	-1	7.		-1		-20	-1	20	-14
-2	39	-40	1	4Z	-45	I			-1			~1	20	19	1	30	-30	1 25	- 17	-17	1	· .	-20	1.		50		12	- 26			12		10	-13
-3	59	61	2	24	-21	He .	9, L.	-10		34	30	-2		- 2	ž	30	31	1 22			1 3	25	-26	ł ĭ	18	14	-3			-3	71	65	-3	17	15
	55	55	1 3	24	23	۱.			-3	34	-31	-3	3,9	- 38		29	28		20	-22	1	÷		;	43	-42		47	42	-4	33	-30	-4	żó	-15
-?		- 1	1 2		19	i i	19			10.14	-1	1.2	- 21		1 2	20	- 27	-6	14	ii	-			1 3	5+	21									
		-1	1 2		-13		49	50	1	10, 10		- 6	16	1.4	1 1	63	57	-			н.	10, L-	-7				H=	11, L•	-3	He	11, L=	-5	н=	11, L=	-7
	44		ľ	•••		1 3	27	26	۰ ا	50	-49			•••	1 7			H	10. L.	- 6				H=	10, L=	-9									
He	9. L.	- 7	н.	9. L=	-8	-			i	12	-9	H.	10, L=	-3	H.	10, L=	-4				-1	14	16				0	12	. ?	0	13	-16		21	18
						н-	9, L4	-10	2	28	29							• •	35	36	1 -2			I -1	38	- 32	1	20	-20	1	17	12 1	1	21	
•	14	11	-1	30	28	1			3	8*	-5	0	17	-20	-1	13	11	1	34	35	1 -3	30	26	1 -2	5 •	-3	2	14	-11	4	10	- 1	1 5	10	
1	26	-28	-2	14	-14	-1	19	-19	1 1	46	45	1		-2	-2	24	20	2	23	- 22	1 22	11	-10	1	11. 1.	_ 1	:		ŝ		57			•	•
- 2	29	-28	-3	25	-21	-2	10	-9	1 5	22	22	2	50	49	1 -3	20	13	1 3	22	-15	1 ->	14	-17	1 **	11, 1-	-1	•		•	•			He	11. 2.	-7
3	13	10	i	32	31	I			1 -1	15	14	1 3	11	-10	1 -:	12	-16	1 3	- 1	-10		10. 1	-8	۰ ا	5.0		He	11. 1.	-3	He	11. 1.	-5			
- 2	25	-32	-?	21	14	1 **	10, 11		1 - 4		- 35	1 2	20	10	1			1 1	1.		L			1 7	19	-21 I			-			- 1	-1	**	-41
2	14	14	- °	23	21	۰.	••		1 22	12	-22	1 2	37	- 29	1 29		-11	ľ		••	۰ ا	80	72	1.	••		-1	70	7	-1	39	36	-2	17	-14
•		-14	1	9.1.	-9	1 1	20		1 2		- 11		••	-40		••		н.	10. L.	- 6	l i	8.	-2	H-	11. L=	-1	-2	63	-54	-2	7.	-4	- 3	15	-10
•	10		1			1 2	82	-76	6	34	32	Н.	10. L.	-3	н-	10. L.	-5	1			1 2	35	-30				-3	16	12	-3	45	-43	1		
He	9.14	- 7	۰ ا	54	53	3	28	26	-						1			-1	98	-4] 3	10	9	1 -1	20	-17	-4	66	61	-4	8	9	H-	11, L=	-8
			1 1	19	-14	4	83	77	н.	10, L-	-2	-1	10.	-2	0	10*	7	-2	11	13	4	20	17	1 -5	6	-3							1 .		
-1	11	-14	2	30	-29	-1	28	-27				-2	68	-67	1	10.	0	-3	10			8	-7	1			н.	11, L-	-4	н.	11, L-	-6	. ?		
-2	44	43	3	10	7	-2	38	-32	0	25	22	-3	18	-15	2	94	-4	1	15	13				H=	11. L.	-2					• 1	- 10		3	
-3	94	8	1 *	25	-21	-3	44	-39	1	27	-24	1 - 1	78	75	1 3	12	. ?	1 - ?	23	-14	H-	10, 1		۰.			,	15			31	- 57	1 4	'	- 5
-+	17	-22	1 3	9e	5	1 - 1	19	16	2		.2	1 - ?	22	19	1 2	16	11	1	21	-14	-1	14	15	Ιĭ		-29	;		-41	5	7.		н-	11. I÷	8
- ?	32	31	L	<u> </u>		1 -3	5	3	1 3	33	32	1	30	-27	1 2	31	-26	1	10. 11	- 7	13		-43	1 2	69	-64	â	21	18	5	. 21	19	1		
			"" ·	. V. L.	-9	1	10. 11		1 2	7.	2	I "'	~	~1	۰ I		-30	1."-			1 -3	12		1 5	5.	1	4	19	16	4	- 5	5	-1	5*	-23
-1	10	14	1 -1	17	11	1 **		- 1	1 6	- 11	11	1			1			1			1 -			1									i		

unambiguously. The R index for this first trial model, assuming B=3.8 Å² for all atoms, was 0.29.

Structure refinement

Refinement of the atomic parameters was carried out by block-diagonal least-squares to minimize the quantity $\Sigma w(|F_o| - |F_c|)^2$, using blocks of 4×4 for the isotropic refinement or 9×9 for the anisotropic refinement and 2×2 for the scale. After two isotropic cycles, the *R* index was reduced to 0.17, and after two anisotropic cycles it was reduced further to 0.11. The hydrogen atoms were located from the difference map which was evaluated at this stage. Their peak heights varied between 0.3 and 0.6 e.Å⁻³. The refinement was continued, anisotropically for the O and C atoms and isotropically for the H atoms, until the parameters' shifts were within 0.2 of the corresponding estimated standard deviations. The *R* index for the last three cycles was 0.044. The weighting function employed in these calculations was

$$w = 1 \div \left[1 + \left(\frac{|F_o| - p_2}{p_1}\right)^4\right],$$
 (3)

where $|F_0|=0.5$ to 78.9 electrons, $p_1=21$ and $p_2=23$. The weights evaluated with this function are nearly equal for the medium structure amplitudes, and very small for the very weak and very strong reflexions.

As a final check on the refined parameters, the last four cycles of refinement were repeated (a) with w=1for all reflexions, (b) with $w=1 \div [p_1+|F_0|+p_2|F_0|^2]$ where $p_1 = 2F_{\min}$ and $p_2 = 2/F_{\max}$; two differential syntheses were evaluated also. The mean and maximum changes in the non-hydrogen bond lengths and angles from those of the original refinement with weighting scheme (3) were as follows: 0.001, 0.002 Å and 0.06 and 0.12° for trial (a); 0.002, 0.008 Å and 0.10, 0.26° for trial (b); 0.003, 0.006 Å and 0.13, 0.31° for the differential syntheses. Compared with the calculated e.s.d.'s of 0.002 to 0.003 Å for the bond lengths and 0.1 to 0.2° for the angles, all the discrepancies were within the non-significant level. However, to be on the safe side the calculated e.s.d.'s were incremented by 80%.

The scattering-factor curves employed in all the calculations were those given by Hanson, Herman, Lea & Skillman (1964), except that the H curve was modified by an artificial temperature factor of -2.5 Å^2 in order to bring it closer to the correct curve as proposed by Jensen (1965).

Results

The final parameters of the refinement with weighting function (3) are given in Tables 2 and 3. The e.s.d.'s in these Tables are 1.8 times those calculated from the least-squares matrices. The structure factors are listed

Table 5. Agreement summary

2796 observed reflexions $(0.5 \le |F_0| \le 78.9)$

R = 0.044

Category	I	imits		Number
1 2 3	$\begin{aligned} \Delta F &\le 1 \cdot 0 F_{th} \\ 1 \cdot 0 F_{th} &< \Delta F &\le 2 \cdot 0 F_{th} \\ 2 \cdot 0 F_{th} &< \Delta F &\le 3 \cdot 0 F_{th} \end{aligned}$	or or or	$ \Delta F / F_o \le 0.08$ $0.08 < \Delta F / F_o \le 0.12$ $0.12 < \Delta F / F_o \le 0.16$	2741 53 1
4	$3 \cdot 0 F_{th} < \Delta F $	or	$0.16 < \Delta F / F_o $	1
1 2 3 4	$\begin{aligned} & F_c \le 1 \cdot 0 F_{th} \\ & F_c \le 1 \cdot 0 F_{th} < F_c \le 1 \cdot 5 F_{th} \\ & 1 \cdot 5 F_{th} < F_c \le 2 \cdot 0 F_{th} \\ & 2 \cdot 0 F_{th} < F_c \end{aligned}$	Tene.	(1 cmax) = 5 ()	519 52 7 17

 $|F_{th}| =$ threshold amplitude = 0.2 to 1.1.

in Table 4, and the corresponding agreement summary is given in Table 5. The individual agreement in the observed data is good except for the two reflexions $32\overline{1}$ ($|F_o| = 6\cdot5$, $|F_c| = 4\cdot4$) and $33\overline{1}$ ($|F_o| = 3\cdot9$, $|F_c| = 2\cdot3$) which may be affected by double diffraction. The unobserved data include 24 reflexions (those in categories 3 and 4) which were obscured by high background and could not be measured accurately.

A perspective view of the molecule showing the shape of the tetrahydrofuran ring and the orientations of the substituents, but excluding the hydrogen atoms of the methyl, ethyl and phenyl groups, is given in Fig. 1. The bond lengths and angles, not corrected for thermal vibration, are presented in Fig. 2. The C-H bond lengths vary from 0.89 to 1.13 Å and their mean is 0.98 Å. The tetrahydrofuran external angles which have been excluded from Fig. 2 for clarity, are listed in Table 6.

Fig. 2. (a) Bond lengths (Å) and (b) angles (°), with their e.s.d.'s in parentheses. E.s.d.'s of bond lengths are ×10³.

Table 6. The	e tetrahydr	ofuran e	external	l angles (°)
which are or	nitted from	n Fig.2,	and the	eir e.s.d.'s

O(1) - C(2) - H(2)	106.4 (1.5)
C(3) - C(2) - H(2)	111.2 (1.6)
C(7) - C(2) - H(2)	110.2 (1.6)
C(2) - C(3) - C(15)	111.8 (0.2)
C(4) - C(3) - C(9)	115.3 (0.2)
C(3) - C(4) - H(4,1)	113.7 (1.8)
C(3) - C(4) - H(4,2)	108.1 (1.6)
C(5) - C(4) - H(4,1)	112.6 (1.8)
C(5) - C(4) - H(4,2)	110.1 (1.6)
H(4,1)-C(4)-H(4,2)	108.6 (2.4)
C(4) - C(5) - H(5)	111.3 (1.5)
O(1) - C(5) - H(5)	105-9 (1-5)
C(6) - C(5) - H(5)	109.6(1.5)

Discussion

The tetrahydrofuran ring

In the highly saturated five-membered tetrahydrofuran ring, the two C-O bonds are very nearly equal (their weighted mean is 1.445 Å and $\sigma_{wm} = 0.003$ Å), but the three C-C single bonds are significantly different in length from each other, indicating that they are probably affected by the size of the substituents. Thus the bond between atoms C(2) and C(3) to which the ethyl and the bulky phenyl rings are attached seems to be stretched to 1.556 Å, and this has been compensated for by a contraction of the opposite C(4)-C(5) bond to 1.517 Å, while the intermediate bond has remained at 1.543 Å, which is about the normal length for a C-C single bond. The mean of these three C-C bonds is 1.539 Å. Equivalent valence angles at atoms C(2) and C(5) are equal within the estimated accuracy, but this is not the case for the angles at atoms C(3) and C(4)where the substituents are considerably different in size. As an example, the internal valency angle C(2)-C(3)-C(4) is 99.4° while C(3)-C(4)-C(5) is 103.5°.

The five atoms of the ring are significantly nonplanar as can be seen from the side view shown in Fig. 1. The equation of the mean plane through them, referred to the orthogonal set of axes X' along the a axis, Y' in the a b plane, and Z' along the c^* axis is

$$0.9062X' - 0.3964Y' - 0.1469Z' + 2.8529 = 0, \quad (4)$$

and the maximum deviations of these five atoms from the mean plane are -0.25 Å for C(3) and +0.23 Å for C(4). A projection of the molecule along the normal to this plane is presented in Fig. 3, where the perpendicular distances of the atoms from (plane 4) are given.

Orientation of the substituents

The projection in Fig. 3 shows that the ethyl group on C(2) is axial and the methyl group on C(5) is equatorial, and both are on the same side of the mean plane of the tetrahydrofuran ring. This confirms the configuration deduced by Casy & Hassan (1967) from the proton magnetic resonance spectrum. As is to be expected the axial substituents (and similarly the equatorial substituents) on atoms C(2), C(3), C(4) and C(5), respec-

Fig. 3. Projection of the molecule along the normal to the mean plane of the tetrahydrofuran ring, and the perpendicular distances (Å) of the atoms from it.

tively, lie alternately above and below the plane of the tetrahydrofuran ring.

The equations of the mean planes of the phenyl rings through atoms C(9) to C(14) and C(15) to C(20) are

$$0.7926X' + 0.0930Y' - 0.6026Z' + 2.4880 = 0$$
 (5)

and

$$0.4081X' + 0.8287Y' + 0.3830Z' - 1.4719 = 0$$
(6)

respectively. Each phenyl ring is planar to within the accuracy of this determination. The corresponding χ^2 values are 10.6 and 7.1 respectively, and each of their carbon atoms is within 0.006 Å from the corresponding mean plane. The dihedral angle between the two phenyl rings is 80.2°.

The orientation of each of the phenyl rings relative to the tetrahydrofuran ring can be described as equatorial or axial, by the angle of rotation round the joining bond, and by the dihedral angle between their mean planes, as follows:

	Orientation	Rotation angle	Dihedral angle
C(9) to C(14)	equatorial	31·9°	39·7°
C(15) to C(20)	axial	83·0	89·2

Intermolecular distances

There are no particularly short intermolecular distances in the structure. The shortest observed van der Waals contacts for the different types of atoms, and the corresponding values calculated from the atomic radii given by Pauling (1960), shown in parentheses, are: C...C 3.58 (3.4) Å; C...O 3.68(3.1) Å; H...C 2.86(2.9) Å; H...O 2.77(2.6) Å; H...H 2.51(2.4) Å.

Final difference map

The residual electron density in the final difference map is within $\pm 0.20 \text{ e.}\text{Å}^{-3}$, while the calculated $\sigma(\varrho_0)$ is $0.06 \text{ e.}\text{Å}^{-3}$. The three strongest positive peaks of heights 0.15 to $0.20 \text{ e.}\text{Å}^{-3}$ occur on the C(3)–C(2), C(3)–C(9), and C(3)–C(15) bonds about halfway between the pairs of atoms forming the bonds.

The authors are particularly grateful to Professor A.F.Casy, University of Alberta, for proposing this X-ray analysis, and for supplying the crystals. All computations were carried out on the IBM 360 system with the assistance of Mrs M.E. Pippy of this laboratory and the staff of the NRC Computation Centre.

References

- AHMED, F. R., HALL, S. R., PIPPY, M. E. & HUBER, C. P. (1966). NRC Crystallographic Programs for the IBM/360 System, World List of Crystallographic Computer Programs. 2nd Edition, Appendix page 52.
- Casy, A. F. & Hassan, M. M. A. (1967). Tetrahedron, 23, 4075.
- COCHRAN, W. & WOOLFSON, M. M. (1955). Acta Cryst. 8, 1.
- HANSON, A. W. & AHMED, F. R. (1958). Acta Cryst. 11, 724.
- HANSON, H. P., HERMAN, F., LEA, J. D. & SKILLMAN, S. (1964). Acta Cryst. 17, 1040.
- HARPER, N. J., JONES, D. & SIMMONDS, A. B. (1966). J. Chem. Soc. (C), p. 438.
- JENSEN, L. H. (1965). American Crystallographic Association Abstracts, Winter Meeting, Suffern, New York.
- KARLE, I. L., HAUPTMAN, H., KARLE, J. & WING, A. B. (1958) Acta Cryst. 11, 257.
- KARLE, I. L. & KARLE, J. (1963). Acta Cryst. 16, 969.
- KARLE, J. & KARLE, I. L. (1966). Acta Cryst. 21, 849.
- PAULING, L. (1960). *The Nature of the Chemical Bond*. Ithaca: Cornell Univ. Press.
- WOOLFSON, M. M. (1954). Acta Cryst. 7, 61.